Weber-Schafheitlin type integrals with exponent 1
نویسندگان
چکیده
Explicit formulae for Weber-Schafheitlin type integrals with exponent 1 are derived. The results of these integrals are distributions on R+. Received 07 April 2008; Revised 30 June 2008
منابع مشابه
Weber - Schafheitlin ’ s type integrals with exponent 1
Explicit formulae for Weber-Schafheitlin’s type integrals with exponent 1 are derived. The results of these integrals are distributions on R+.
متن کاملOn the Mellin Transform of a Product of Hypergeometric Functions
We obtain representations for the Mellin transform of the product of generalized hypergeometric functions 0 F1[ ax]1 F2[ b2x2] for a;b > 0. The later transform is a generalization of the discontinuous integral of Weber and Schafheitlin; in addition to reducing to other known integrals (for example, integrals involving products of powers, Bessel and Lommel functions), it contains numerous integr...
متن کاملON SELBERG-TYPE SQUARE MATRICES INTEGRALS
In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.
متن کاملTaylor expansion for the solution of a stochastic differential equation driven by fractional Brownian motions
We study the Taylor expansion for the solution of a differential equation driven by a multi-dimensional Hölder path with exponent β > 1/2. We derive a convergence criterion that enables us to write the solution as an infinite sum of iterated integrals on a nonempty interval. We apply our deterministic results to stochastic differential equations driven by fractional Brownian motions with Hurst ...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012